44 research outputs found

    Towards Explainability of UAV-Based Convolutional Neural Networks for Object Classification

    Get PDF
    f autonomous systems using trust and trustworthiness is the focus of Autonomy Teaming and TRAjectories for Complex Trusted Operational Reliability (ATTRACTOR), a new NASA Convergent Aeronautical Solutions (CAS) Project. One critical research element of ATTRACTOR is explainability of the decision-making across relevant subsystems of an autonomous system. The ability to explain why an autonomous system makes a decision is needed to establish a basis of trustworthiness to safely complete a mission. Convolutional Neural Networks (CNNs) are popular visual object classifiers that have achieved high levels of classification performances without clear insight into the mechanisms of the internal layers and features. To explore the explainability of the internal components of CNNs, we reviewed three feature visualization methods in a layer-by-layer approach using aviation related images as inputs. Our approach to this is to analyze the key components of a classification event in order to generate component labels for features of the classified image at different layers of depths. For example, an airplane has wings, engines, and landing gear. These could possibly be identified somewhere in the hidden layers from the classification and these descriptive labels could be provided to a human or machine teammate while conducting a shared mission and to engender trust. Each descriptive feature may also be decomposed to a combination of primitives such as shapes and lines. We expect that knowing the combination of shapes and parts that create a classification will enable trust in the system and insight into creating better structures for the CNN

    Extraction and Quantification of Carpaine from Carica papaya Leaves of Vietnam

    Full text link
    Our previous research indicated that carpaine and its derivative pseudocarpaine extracted from Carica papaya leaves had anti-cancer activity. In this study, we extracted the total alkaloid from Carica papaya leaves, then extracted carpaine and quantitative analyzed carpaine in the total alkaloid. Carica papaya leaves was crushed, and then extracted with EtOH to obtain the total extract. This extract was extracted with suitable solvent to obtain total alkaloid. Continued to extract the total alkaloid by using open column chromatography and crystallizing method to purify carpaine. The research result showed that the total alkaloid in Carica papaya leaves was 0.2% comparing with dried material. Quantitative analyze of purified carpaine by HPLC determined that carpaine was the main alkaloid with the content was 63% of the total alkaloid extracted from Carica papaya leaves

    Geometrically nonlinear isogeometric analysis of laminated composite plates based on higher-order shear deformation theory

    Full text link
    In this paper, we present an effectively numerical approach based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of laminated composite plates. The HSDT allows us to approximate displacement field that ensures by itself the realistic shear strain energy part without shear correction factors. IGA utilizing basis functions namely B-splines or non-uniform rational B-splines (NURBS) enables to satisfy easily the stringent continuity requirement of the HSDT model without any additional variables. The nonlinearity of the plates is formed in the total Lagrange approach based on the von-Karman strain assumptions. Numerous numerical validations for the isotropic, orthotropic, cross-ply and angle-ply laminated plates are provided to demonstrate the effectiveness of the proposed method

    Heat Stress Affects Seed Set and Grain Quality of Vietnamese Rice Cultivars during Heading and Grain Filling Period

    Get PDF
    Environmental stress trigger a variety of rice plant response, ranging from alters seed set, grain yield and grain quality during flowering and grain filling stage.  Efforts are required to improve our understanding of the impact of heat stress on rice production, which are essential strategies in rice cultivation. This article investigated the seed set, yield components and grain yield of Vietnamese rice cultivars (Indica germplasm) under high temperature environment during the flowering and grain filling stage. Six rice cultivars, including popular cultivars and new cultivars of Cuu Long Delta Rice Research Institute, and one popular extraneous cultivar with differences in maturing time, were grown in pots at high temperature (HT) and natural temperature condition as control (CT). All rice cultivars were subjected to the high temperature starting from the heading stage to the harvest maturity, applied by greenhouse effect. The greenhouse has about 25 cm window opening on 3 sides for air ventilation. The seed set rate of the heat-sensitive rice genotypes decreased significantly under HT, leading to a significant reduction in grain yield. The lowest seed set was recorded in “OM4900” (44.3%) and “OM18” (39.9%) under high temperature environment. The lower yield in all rice cultivars at an elevated temperature resulted in a dramatic decrease of filled grains and contributed to a loss of 1000-grain weight. ‘“OM892” is a potential rice cultivar for heat tolerant breeding program due to the seed set percentage was above 80% in both HT and CT conditions. High temperature during the grain filling stage resulted in a decreased amylose and increased chalkiness for all OM cultivars

    Incommensurate antiferromagnetic order in weakly frustrated two-dimensional van der Waals insulator CrPSe3_3

    Full text link
    Although the magnetic order is suppressed by a strong magnetic frustration, it is maintained but appears in complex order forms such as a cycloid or spin density wave in weakly frustrated systems. Herein, we report a weakly magnetic-frustrated two-dimensional van der Waals material CrPSe3_3. Polycrystalline CrPSe3_3 was synthesized at an optimized temperature of 700^\circC to avoid the formation of any secondary phases (e.g., Cr2_2Se3_3). The antiferromagnetic transition appeared at TN126T_N\sim 126 K with a large Curie-Weiss temperature TCW371T_{\rm CW} \sim -371 via magnetic susceptibility measurements, indicating weak frustration in CrPSe3_3 with a frustration factor f(TCW/TN)3f (|T_{\rm CW}|/T_N) \sim 3. Evidently, the formation of long-range incommensurate spin-density wave antiferromagnetic order with the propagation vector k=(0,0.04,0)k = (0, 0.04, 0) was revealed by neutron diffraction measurements at low temperatures (below 120K). The monoclinic crystal structure of C2/m symmetry is preserved over the studied temperature range down to 20K, as confirmed by Raman spectroscopy measurements. Our findings on the spin density wave antiferromagnetic order in two-dimensional (2D) magnetic materials, not previously observed in the MPX3_3 family, are expected to enrich the physics of magnetism at the 2D limit, thereby opening opportunities for their practical applications in spintronics and quantum devices.Comment: 23 pages, 4 figures, 2 table
    corecore